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Abstract: Extreme-Mass-Ratio Binary systems in the
Inspiral phase (EMRIs) are a primary source of gravitational
waves for the NASA/ESA Laser Interferometric Space An-
tenna (LISA). Data analysis techniques for detection and
extraction of physical information will require an a priori
theoretical knowledge of the waveforms with a certain preci-
sion. In this poster we report the results of numerical simu-
lations in the Time Domain of EMRIs. These computations
are based on Finite Element Methods and their final goal
is to achieve simulations accurate enough for estimating the
radiation reaction effects in the gravitational waveforms.

Main Motivation

EMRIs consist of a stellar-type object, with mass m ∼
1 − 102M⊙, orbiting around a Super-Massive Black Hole
(SMBH), with mass M• ∼ 105 − 108M⊙. The range of mass
ratios is: µ = m/M• ∼ 10−3 − 10−8 .

Typically, EMRIs spend around 105 − 106 cycles inside the
LISA band during the last year before plunge. Although they
circularize due to GW emission, they have substantial eccen-
tricities. Data analysis techniques for detection and extrac-
tion of physical information require a theoretical knowledge
of the waveforms with accuracy: δϕgw ∼ 1 over ∼ 3 weeks
for detection; δϕgw ∼ 1 over ∼ 1 yr for extraction of physical
information.

The Computational Challenge

• The framework to describe EMRIs is relativistic perturba-
tion theory and the steps to follow are: (i) To compute the
perturbations created by the stellar-type object in the space-
time geometry of the SMBH. (ii) To estimate how these per-
turbations affect the orbital motion of the stellar-type object
(the radiation reaction effects). (iii) To compute the wave-
forms of generated in the inspiral.

• Numerical methods are needed in order to solve the partial
differential equations involved. Since many of the relevant
EMRIs will have high eccentricities, Time-Domain methods
seem more appropriate than Frequency-Domain ones.

• The choice of numerical techniques should take into account
the following points:

• We have to deal with different spatial (and temporal)
scales → Grid adaptivity.

• We have to deal with singular source terms associated
with the energy-momentum distribution of the stellar-type
object.

• The computations require high accuracy.

• Time-domain simulations of EMRIs may have to face
stability problems and the appearance of spurious high-
frequency modes.

Our Computational Techniques

• Our choice is: Finite Element methods (FEMs) for spatial
discretizations and Finite Differences methods (linked to the
FEM) for the time discretization.

• The main features of FEMs are: (i) Can deal with Compu-
tational domains of arbitrary geometries. (ii) Incorporate
naturally the Boundary Conditions of the problem. (iii)
Provide systematic ways of dealing with singular sources like
the ones that we encounter in the description of EMRIs. (iv)
Provide grid adaptivity in a natural manner. (v) There is
a great variety of computational infrastructure available for
FEMs.

A Toy Model in Scalar Gravity

As a testbed of the numerical techniques we have studied
a toy model that contains the main ingredients of actual
EMRIs:

• The SMBH is described by the Schwarzschild solution [in
scalar gravity the metric is not dynamic] and the stellar-type
object is described as a particle following a trajectory z(t)
around the SMBH.
• The dynamical gravitational field is described by a scalar

field Φ satisfying the following wave-like equation:
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Sch
∇µ∇νΦ = 4πeΦρ , ρ =

m
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• The trajectory of the stellar-mass object is determined
by the following equations of motion:

ż(t) = v(t) , v̇(t) = f
SMBH

+ fΦ

A Toy Model in Scalar Gravity

The first force, f
SMBH

, describes the force due to the presence
of the SMBH and is a conservative force term in the sense
that it does not produce any loss of energy or angular mo-
mentum. The second force, fΦ, is due to the stellar object
own gravitational field (self-force term) and is a dissipative
force term in the sense that it makes the orbit around the
Black Hole to shrink as energy is carried away from the sys-
tem in the form of Gravitational Waves (radiation reaction
mechanism).

Toy Model Simulations

• Domain discretization and Adaptivity:

• Trajectory:

The system stellar mass-object plus scalar gravitational

field has a CONSERVATION LAW which tell us that

the difference in energy from two different times

must be equal to the energy radiated away from the

system in Gravitational Waves (both to infinity and

into the horizon).

• Evolutions WITHOUT Adaptivity (the particle is
described as a Gaussian packet): For a mesh of ∼ 104 tri-
angles we observe that the width of the Gaussian cannot be
smaller than ∼ 1M .

• Evolutions WITH Adaptivity: Using a similar num-
ber of triangles (∼ 1.1 × 104) we can reduce the Gaussian
width in one order of magnitude, i.e. to ∼ 0.1M .

Simulations in the Regge-Wheeler gauge

• We have used FEMs to relativistic perturbations created
by a stellar-type object orbiting a non-rotating SMBH. In
the Regge-Wheeler gauge, the perturbations are described
by wave-like master equations:

[

−∂2
t + ∂2

r∗
− V (r)

]

Ψℓm = Sℓm

Sℓm(t, r) = F (t, r)δ[r − rp(t)] + G(t, r)δ′[r − rp(t)]

• We use 1D grids concentrating elements around the stellar-
type object to resolve properly the singular source terms as-
sociated with it:

Numerical Results

• Waveforms:

Circular orbits
Orbits with
e = 0.76

Zoom-Whirl orbits

• Comparison with Frequency Domain calcula-
tions: Circular orbits with p = 7.9456 [Poisson, PRD 52,
5719 (1995)].

(ℓ, m) Ė∞
ℓm

(TD) L̇∞
ℓm

(TD) Ė∞
ℓm

(FD) L̇∞
ℓm

(FD)

(2, 1) 8.1662 · 10−7 1.8289 · 10−5 8.1633 · 10−7 [0.04%] 1.8283 · 10−5 [0.04%]

(2, 2) 1.7064 · 10−4 3.8219 · 10−3 1.7063 · 10−4 [0.006%] 3.8215 · 10−3 [0.01%]

(3, 1) 2.1732 · 10−9 4.8675 · 10−8 2.1731 · 10−9 [0.005%] 4.8670 · 10−8 [0.01%]

(3, 2) 2.5204 · 10−7 5.6450 · 10−6 2.5199 · 10−7 [0.02%] 5.6439 · 10−6 [0.02%]

(3, 3) 2.5475 · 10−5 5.7057 · 10−4 2.5471 · 10−5 [0.02%] 5.7048 · 10−4 [0.02%]

(4, 1) 8.4055 · 10−13 1.8825 · 10−11 8.3956 · 10−13 [0.12%] 1.8803 · 10−11 [0.12%]

(4, 2) 2.5099 · 10−9 5.6215 · 10−8 2.5091 · 10−9 [0.04%] 5.6195 · 10−8 [0.04%]

(4, 3) 5.7765 · 10−8 1.2937 · 10−6 5.7751 · 10−8 [0.03%] 1.2934 · 10−6 [0.03%]

(4, 4) 4.7270 · 10−6 1.0586 · 10−4 4.7256 · 10−6 [0.03%] 1.0584 · 10−4 [0.02%]

(5, 1) 1.2607 · 10−15 2.8237 · 10−14 1.2594 · 10−15 [0.1%] 2.8206 · 10−14 [0.1%]

(5, 2) 2.7909 · 10−12 6.2509 · 10−11 2.7896 · 10−12 [0.05%] 6.2479 · 10−11 [0.05%]

(5, 3) 1.0936 · 10−9 2.4494 · 10−8 1.0933 · 10−9 [0.03%] 2.4486 · 10−8 [0.04%]

(5, 4) 1.2329 · 10−8 2.7613 · 10−7 1.2324 · 10−8 [0.04%] 2.7603 · 10−7 [0.04%]

(5, 5) 9.4616 · 10−7 2.1190 · 10−5 9.4563 · 10−7 [0.06%] 2.1179 · 10−5 [0.06%]

Total 2.0293 · 10−4 4.5451 · 10−3 2.0292 · 10−4 [0.005%] 4.5446 · 10−3 [0.02%]

Elliptic orbits with (A) (p, e) = (7.50478, 0.188917) ; (B)
(p, e) = (8.75455, 0.764124) [Cutler, Kennefick, and Poisson,
PRD 50, 3816 (1995)]

Orbit < Ė∞ > (TD) < L̇∞ > (TD) < Ė∞ > (FD) < L̇∞ > (FD)

A 3.1672 · 10−4 5.9636 · 10−3 3.1680 · 10−4 [0.03%] 5.9656 · 10−3 [0.04%]

B 2.1004 · 10−4 2.7505 · 10−3 2.1008 · 10−4 [0.02%] 2.7503 · 10−3 [0.01%]

Simulations in the Lorentz gauge

• Computations in the Regge-Wheeler gauge are sufficient to
simulate an EMRI via the adiabatic approximation. How-
ever, if we want to include Radiation Reaction effects via
self-force calculations, the following issues appear in the RW
gauge:
• Some metric perturbations are singular (at the particle

location) in the RW gauge.

• The mode-sum scheme for subtracting the singular piece
of the self-force is formulated in the Lorentz gauge and the
gauge transformation is singular.

• The singularities in the source terms of the evolution
equations in the RW gauge are stronger (less differentiability
of the solutions) than in the Lorentz gauge.

• See [Barack and Lousto, PRD 72, 104026 (2005)] for a
detailed list of advantages of working in the Lorentz gauge.
• These are much more complicated calculations since they
involve many more variables and the system of equations is
coupled and constrained. The form of the equations to solve
is:

Φµ = ϕµν
;ν = 0 , ϕµν = hµν − 1

2
h gSch

µν

ϕµν
;ρ
;ρ + 2RSch

µ
ρ
ν
σϕρσ = −16πm

∫

dτ√−g
uµuνδ

4[x − z(τ )]

• Some Waveforms:

Circular orbits
Orbits with
e = 0.188

Zoom-Whirl orbits

Future Work

• Validate the Numerical Code for computations in the
Lorentz gauge.

• Construct the necessary infrastructure for the computation
of self-forces.

• The technology for computations in the case of a non-
rotating SMBH are in place. This technology should be
transfer to the case of a rotating (Kerr) SMBH, which is
the case astrophysically relevant.
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